Trophic network structure emerges through antagonistic coevolution in temporally varying environments.
نویسندگان
چکیده
Understanding the mechanisms underlying ecological specialization is central to our understanding of community ecology and evolution. Although theoretical work has investigated how variable environments may affect specialization in single species, little is known about how such variation impacts bipartite network structure in antagonistically coevolving systems. Here, we develop and analyse a general model of victim-enemy coevolution that explicitly includes resource and population dynamics. We investigate how temporal environmental heterogeneity affects the evolution of specialization and associated community structure. Environmental productivity influences victim investment in resistance, which will shape patterns of specialization through its regulating effect on enemy investment in infectivity. We also investigate the epidemiological consequences of environmental variability and show that enemy population density is maximized for intermediate lengths of productive seasons, which corresponds to situations where enemies can evolve higher infectivity than victims can evolve defence. We discuss our results in the light of empirical studies, and further highlight ways in which our model applies to a range of natural systems.
منابع مشابه
Rapidly fluctuating environments constrain coevolutionary arms races by impeding selective sweeps
Although pervasive, the impact of temporal environmental heterogeneity on coevolutionary processes is poorly understood. Productivity is a key temporally heterogeneous variable, and increasing productivity has been shown to increase rates of antagonistic arms race coevolution, and lead to the evolution of more broadly resistant hosts and more broadly infectious parasites. We investigated the ef...
متن کاملA Spatio-temporal Bayesian Network Approach for Revealing Functional Ecological Networks in Fisheries
Ecosystems consist of complex dynamic interactions among species and the environment, the understanding of which has implications for predicting the environmental response to changes in climate and biodiversity. Machine learning techniques can allow such complex, spatially varying interactions to be recovered from collected field data. In this study, we apply structure learning techniques to id...
متن کاملBacteria-phage antagonistic coevolution in soil.
Bacteria and their viruses (phages) undergo rapid coevolution in test tubes, but the relevance to natural environments is unclear. By using a "mark-recapture" approach, we showed rapid coevolution of bacteria and phages in a soil community. Unlike coevolution in vitro, which is characterized by increases in infectivity and resistance through time (arms race dynamics), coevolution in soil result...
متن کاملStability of A Coevolving Host-parasite System Peaks at Intermediate Productivity
Habitat productivity may affect the stability of consumer-resource systems, through both ecological and evolutionary mechanisms. We hypothesize that coevolving consumer-resource systems show more stable dynamics at intermediate resource availability, while very low-level resource supply cannot support sufficiently large populations of resource and consumer species to avoid stochastic extinction...
متن کاملRapid divergent evolution of sexual morphology: comparative tests of antagonistic coevolution and traditional female choice.
Male structures specialized to contact females during sexual interactions often diverge relatively rapidly over evolutionary time. Previous explanations for this pattern invoked sexual selection by female choice, but new ideas emphasize possible sexually antagonistic coevolution resulting from male-female conflict over control of fertilization. The two types of selection have often not been car...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings. Biological sciences
دوره 279 1727 شماره
صفحات -
تاریخ انتشار 2012